最後挑選的車身是 雙輪 拋棄Wall.E了,只因為Cost.
由照片來看.該產品的DEMO有使用樹莓派加上一組電機控制器,但一口氣吃掉26Pin.


還是使用一組L298N. 只要花掉4Pin就好.只要規劃先將 初始,前進,後退,轉彎,停止的規劃定義好
如對應藍芽手把的類比頭可以先設定為
Fordward : Y+ > 0
Backward: Y- < 0
TurnLeft: X- < 0
TurnRight: X+ > 0
如針對L298N定義的話
ENA | IN1 | IN2 | OUT1 | OUT2 | 馬達狀態 |
( ENB ) | ( IN3 ) | ( IN4 ) | ( OUT3 ) | ( OUT4 ) |
0 | X | X | X | X | 無動力停止 |
1 | 0 | 0 | | | 快速煞車 |
1 | 0 | 1 | 0 | 1 | 正轉 |
1 | 1 | 0 | 1 | 0 | 反轉 |
1 | 1 | 1 | | | 快速煞車 |
初始,前進,後退,轉彎,停止的定義大致搞定如下
# OUT1/OUT2 for Right Wheel
# OUT3/OUT4 for Left Wheel
Initial:
ENA = 1;ENB = 1;IN1 = 0;IN2 = 0;IN3 = 0;IN4 = 0
Fordward: # Y+ > 0
ENA = 1;ENB = 1;IN1 = 0;IN2 = 1;IN3 = 0;IN4 = 1
Backward: # Y- < 0
ENA = 1;ENB = 1;IN1 = 0;IN2 = 1;IN3 = 0;IN4 = 1
TurnLeft: # X- < 0
ENA = 1;ENB = 1;IN1 = 0;IN2 = 1;IN3 = 1;IN4 = 0
TurnRight: # X+ > 0
ENA = 1;ENB = 1;IN1 = 1;IN2 = 0;IN3 = 0;IN4 = 1
StopMoving: # Y+ = 0 ,Y- = 0 ,X- = 0 ,X+ = 0
ENA = 1;ENB = 1;IN1 = 0;IN2 = 0;IN3 = 0;IN4 = 0
現在可以開始規劃藍芽手把的類比搖桿去控制GPIO了,以下假設使用PS3藍芽手把連線上RPi2
但實際上的行動方向 應該會有出問題,因為接線的方式可能會造成左右 前後顛倒.
#!/usr/bin/python
import RPi.GPIO as GPIO
import time
import subprocess
import pygame
# Use physical pin numbers
GPIO.setmode(GPIO.BOARD)
# Set up header 6 GPIO pin as an input
#PinENA = 36 # GPIO16 as ENA
#PinENB = 38 # GPIO20 as ENB
PinIN1 = 31 # GPIO6 as IN1
PinIN2 = 33 # GPIO13 as IN2
PinIN3 = 35 # GPIO19 as IN3
PinIN4 = 37 # GPIO26 as IN4
#GPIO.setup(PinENA, GPIO.OUT)
#GPIO.setup(PinENB, GPIO.OUT)
GPIO.setup(PinIN1, GPIO.OUT)
GPIO.setup(PinIN2, GPIO.OUT)
GPIO.setup(PinIN3, GPIO.OUT)
GPIO.setup(PinIN4, GPIO.OUT)
def InitialMoto():
# GPIO.output(PinENA, True)
# GPIO.output(PinENB, True)
GPIO.output(PinIN1, False)
GPIO.output(PinIN2, False)
GPIO.output(PinIN3, False)
GPIO.output(PinIN4, False)
def Fordward():
# GPIO.output(PinENA, True)
# GPIO.output(PinENB, True)
GPIO.output(PinIN1, False)
GPIO.output(PinIN2, True)
GPIO.output(PinIN3, False)
GPIO.output(PinIN4, True)
def Backward():
# GPIO.output(PinENA, True)
# GPIO.output(PinENB, True)
GPIO.output(PinIN1, True)
GPIO.output(PinIN2, False)
GPIO.output(PinIN3, True)
GPIO.output(PinIN4, False)
def TurnLeft():
# GPIO.output(PinENA, True)
# GPIO.output(PinENB, True)
GPIO.output(PinIN1, False)
GPIO.output(PinIN2, True)
GPIO.output(PinIN3, True)
GPIO.output(PinIN4, False)
def TurnRight():
# GPIO.output(PinENA, True)
# GPIO.output(PinENB, True)
GPIO.output(PinIN1, True)
GPIO.output(PinIN2, False)
GPIO.output(PinIN3, False)
GPIO.output(PinIN4, True)
def StopMoving():
# GPIO.output(PinENA, True)
# GPIO.output(PinENB, True)
GPIO.output(PinIN1, False)
GPIO.output(PinIN2, False)
GPIO.output(PinIN3, False)
GPIO.output(PinIN4, False)
pygame.init()
ps3 = pygame.joystick.Joystick(0)
ps3.init()0
print(“Start Moto")
InitialMoto()
while True:
pygame.event.pump()
# buttons = [ps3.get_button(0),ps3.get_button(1),ps3.get_button(2),ps3.get_button(3),ps3.get_button(4),ps3.get_button(5),ps3.get_button(6),ps3.get_button(7),ps3.get_button(8),ps3.get_button(9),ps3.get_button(10),ps3.get_button(11),ps3.get_button(12),ps3.get_button(13),ps3.get_button(14),ps3.get_button(15),ps3.get_button(16)]
# axis = [ps3.get_axis(0),ps3.get_axis(1),ps3.get_axis(2),ps3.get_axis(3)]
# print(buttons)
# print(axis)
if ps3.get_axis(0) < 0 # TurnLeft
TurnLeft()
if ps3.get_axis(0) > 0 # TurnRight
TurnRight()
if ps3.get_axis(1) > 0 # Fordward
Fordward()
if ps3.get_axis(1) < 0 # Backward
Backward()
if ps3.get_axis(0) = 0 & ps3.get_axis(1) == 0 # StopMoving
StopMoving()
subprocess.call("clear")